Probing turbulence intermittency via autoregressive moving-average models.
نویسندگان
چکیده
We suggest an approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based on the autoregressive moving-average modeling of turbulent time series. We introduce an index Υ that measures the distance from a Kolmogorov-Obukhov model in the autoregressive moving-average model space. Applying our analysis to particle image velocimetry and laser Doppler velocimetry measurements in a von Kármán swirling flow, we show that Υ is proportional to traditional intermittency corrections computed from structure functions. Therefore, it provides the same information, using much shorter time series. We conclude that Υ is a suitable index to reconstruct intermittency in experimental turbulent fields.
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملمدل بهینهسازی طراحی زنجیرۀ تأمین سوخت زیستی تحت تقاضای خودرگرسیون برداری میانگین متحرک
Biofuel is known as one of the best gasoline substitutes in the transportation industry. Designing an optimal supply chain is an essential requirement for the commercialization of biofuel production. This paper presents a mixed integer linear programming model to design a biofuel supply chain in which biofuel demand is under autoregressive moving average time series models. It is studied how th...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملThe relationship between the conditional sum of squares and the exact likelihood for autoregressive moving average models
In this note I will study the relationship between the conditional sum of squares (CSS) estimator of moving averages and the maximum likelihood (ML) estimator. I will show that the CSS estimator can be converted into the ML estimator via the use of the EM algorithm. A by-product of the EM algorithm is an expression for the likelihood function and the score. This argument generalizes to autoregr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2014